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Executive Summary 

This document summarizes the work performed under the FAMILIAR project within 
DARPA's Evolutionary Design of Complex Software (EDCS) program. FAMILIAR was 
part of the Rationale Capture (RC) thrust of EDCS. Rationale capture is a way of 
mitigating risk in critical design decisions. Risk in such situations derives from the multi- 
layered, multi-dimensional nature of the systems being designed, and from uncertainty 
about changing conditions in which the systems will be deployed. RC encourages the 
rigorous evaluation of alternatives before committing to a design choice. It enables 
designers to revisit and re-evaluate decisions in the event of changed circumstances or 
new information. 

FAMILIAR is a decision support tool that encourages systematic exploration of design 
alternatives and their tradeoffs. FAMILIAR applies this idea to the evolution of a target 
system. Successive versions of the target system represent "snapshots" of an ongoing 
decision process, which can be compared and contrasted through the rationales behind 
the decisions. 

FAMILIAR represents design knowledge in terms of goals, alternatives, features, and 
components. Goals are the objectives of the current design task. Alternatives are different 
ways of achieving the goals. Alternatives are arranged in a tree where each branch 
consists of successively more detail about potential solutions. Features are the 
dimensions along which the alternatives differ. Features provide a way to compare and 
contrast specific aspects of alternative designs and to perform "what if analyses by 
changing some aspects while keeping others constant. Each alternative may be composed 
of several components (e.g., subsystems or low-level components). FAMILIAR 
maintains the linkage between choices at the component level and their impact on higher- 
level system goals. 

FAMILIAR uses a technique called Functional Representation (FR) to formalize the 
expression of design rationale. This allows FAMILIAR to analyze design decisions and 
provide feedback to the designer. The role of FR in FAMILIAR is to enable reasoning 
about functional rationale, i.e., understanding the role that a particular function plays in 
realizing the goals of the target system. FR allows a designer to discover what happens if 
one or more of the goals change, or if one function is replaced by another, or if a function 
is removed or added. Unlike most formal methods, FR allows the formalization of 
selected aspects of a complex system without requiring a complete formal representation. 
This makes it much more feasible for real-world use. 

We have implemented several mechanisms for capturing design rationale non-intrusively, 
e.g., from e-mail messages, placing the information in the FAMILIAR database, and 
incrementally formalizing it as designers' understanding of the target system evolves. 
Together, these capabilities provide a way of managing uncertainty, mitigating risk, and 
building on best practice in system development. 
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1 INTRODUCTION 

This document summarizes the work performed under a project entitled Formal 
Alternatives Management Integrating Logical Inference and Rationales (FAMILIAR). 
FAMILIAR was part of the Evolutionary Design of Complex Systems (EDCS) program, 
sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air 
Force Research Laboratory (AFRL). 

FAMILIAR was part of the Rationale Capture (RC) thrust of EDCS. The observation 
motivating RC was that the evolution of complex systems involves a web of inter-related 
design decisions with many dimensions of choice. There is often significant uncertainty 
about the potential impact of the decisions and the changing conditions in which they will 
be deployed. In order to minimize the risk in such a process and to optimize the decisions 
made, it is necessary to articulate the rationales for decisions so that they can be 
rigorously evaluated and, if necessary, revisited in the future. 

FAMILIAR sought to situate RC in the context of alternatives management, that is, the 
systematic exploration of alternative design decisions and their tradeoffs against the goals 
of the system under development (the target system). In this respect, FAMILIAR 
represents a marriage of RC with certain ideas from the discipline of domain modeling. 
In domain modeling, alternative ways of designing a particular type of system are 
described. It is understood that in certain contexts, certain design approaches will be 
more appropriate than others. The domain model, together with its associated database of 
reusable components (or assets), defines the space of available solutions and indicates the 
conditions under which either one or another solution is to be preferred. 

FAMILIAR adapts this idea to the evolution of a single system (or, perhaps, different 
versions of a single system). This adaptation amounts to broadening the definition of 
domain so that it can refer to the space of possible designs for a single system, or for 
multiple versions of a system, or for similar but distinct systems. By broadening the 
notion of domain in this way, FAMILIAR establishes itself as both a design tool and a 
domain modeling tool, with emphasis in both respects on alternatives management and 
rationale capture. 

The other primary innovation of FAMILIAR was to formalize the capture and 
presentation of design rationale. Formalization is achieved through functional 
representation (FR), which is a method of expressing the teleology of various parts, or 
facets, of a system. FR has several advantages over other formal approaches to system 
specification and design. In FAMILIAR, there are two principal benefits of FR: 

1.  It allows formalization of selected aspects of a complex system without requiring 
a complete formal representation. 



2.   It decouples teleology from structure. A designer can reason about a particular 
functional aspect of the target system whether or not it corresponds to a defined 
software or hardware component. 

The role of FR in FAMILIAR is to enable reasoning about functional rationale, i.e., 
understanding the role that a particular function plays in realizing the goals of the target 
system. FR allows a designer to discover what happens if one or more of the goals 
change, or if one function is replaced by another, or if a function is removed or added. 

FAMILIAR, as its name implies, is a union of alternatives management and functional 
representation. The project took as its starting point an existing tool in each of these two 
areas. For alternatives management, the starting point for FAMILIAR was the KAPTUR 
(pronounced "capture") tool, which originated as a domain modeling tool that 
emphasized rationale capture for decision support. For functional representation, the 
springboard was the ZD (pronounced "zeddy") tool, which applies FR to software design. 
These two tools were the legacy that the two Pis brought with them to FAMILIAR: Dr. 
Bailin was the originator of KAPTUR, and Dr. Allemang's research was the basis for the 
ZD tool. Lessons were learned through the earlier development of both tools. It was the 
intention of the Pis to apply these lessons to an integrated FAMILIAR tool that would 
improve upon both of its precedents, at the same time enhancing each through their 
complementary capabilities. 

2. OBJECTIVES 

In the FAMILIAR proposal, the following benefits were identified as goals of the project: 

• Non-intrusive and cost-effective design rationale capture 

Despite the recognized importance of design rationale, and the prevalence of 
reasoning about alternatives in the software design process, it is the exception rather 
than the rule when rationales are recorded for later consumption. The main reason for 
this is the effort that must be expended to record design rationale, and the perceived 
interference of this effort with the design process itself. 
One of the goals for FAMILIAR was to minimize the effort involved in capturing 
design rationale, and to weave rationale capture as seamlessly as possible into the 
design process. 

• Enhanced automated support for software/system understanding 

We envisioned a tool that could automatically infer and provide explanations of 
certain software design properties through FR. 

• Enhanced ability to anticipate the impact of intended changes to a system 
Accurately predicting the effects of changes has proven to be one of the most difficult 
aspects of evolving a complex system. Through automated reasoning using FR, 
FAMILIAR was intended to identify potential problems with a proposed change. For 



example, by tracing the fulfillment of provisos (conditions that must be met for 
declared functional goals to be achieved), FR could identify gaps in a design. The 
range of changes susceptible to such analysis would depend on the extent to which a 
system has been modeled using FR. 

Support for increasing formalization as a domain matures 
In KAPTUR-style alternatives management, design alternatives are characterized by 
features selected from a domain ontology. By combining this with the more formal 
FR approach, which can be applied to all or part of a system design, we intended to 
support a spectrum of rationale representations, ranging from completely informal to 
completely formal. As a domain matures, FAMILIAR would support increasing 
levels of formalization by supporting increasingly rich semantics for the features, 
culminating in a functional representation where appropriate. 

» Traceability of evolving design decisions 
FAMILIAR was intended to support a trail of "snapshots" of points visited in the 
space of design alternatives as a system evolves. By borrowing the idea of & family of 
systems from domain modeling, we would be able to represent these multiple 
snapshots in a way that facilitated comparison and understanding the differences. 
This amounts to understanding the evolution of the target system. 

» Decision support through disciplined evaluation of design alternatives 
Ultimately, the motivation for rationale capture is to improve the quality of design 
decisions. During initial design, articulating rationales can help clarify the desirability 
of decisions. During system evolution, previously recorded rationales provide a basis 
for assessing proposed changes. Rationales, however, are only as useful as the ^ 
underlying reasoning is rigorous. A rationale that is not based on sound evaluation of 
alternatives is of minimal use, except perhaps as a negative example. One of the goals 
of FAMILIAR was to emphasize the use of recorded rationale for decision support, 
and this entails supporting the systematic evaluation of design alternatives. 

• Increased integration and feedback between lifecycle phases 
Because FR can be used at various levels of abstraction, it can serve as a link between 
abstract functional design and the more concrete activity of configuring components. 
We expected this to facilitate backtracking to the earlier design phases when 
necessary, enabling designers to move back and forth between abstract specification 
and concrete configuration more fluidly. 

3. ACCOMPLISHMENTS 

Our main accomplishment is the development of an integrated rationale capture system 
combining alternatives management with formal reasoning. The Formal Alternatives 
Manager (FAM) acts as an intelligent portal to the knowledge needed for decision 



support during software (or other) design processes. The enhanced ZD tool supports the 
evaluation of designs and helps refine proposed solutions. 

We demonstrated the integrated system's use to support a tradeoff- and rationale-based 
design process for both software and logistics plans. The demonstrations included 
automated reasoning to detect and recommend fixes for missing functions. 

The following sub-sections provide more detail about technical accomplishments within 
the alternatives manager and the FR system, as well as about their integration with each 
other and with other EDCS technologies. 

3.1 Formal Alternatives Manager (FAM) 

FAM represents a re-thinking of the ideas that went into the earlier KAPTUR tool. The 
advances concern usability as well as richer semantics for the data structures involved in 
alternatives management. 

FAM models evolving design knowledge as a collection of interrelated hierarchies: goals, 
alternatives, features, and components. Goals represent the objectives of the design task 
currently being performed. Each goal has a numerical importance assigned to it relative 
to other goals. This information allows FAM to provide decision support to the user in 
choosing among alternatives. The alternatives hierarchy is a categorization of designs. 
Moving down the hierarchy leads to more specialized knowledge. Features are the 
dimensions along which alternatives differ from each other. Because any complete design 
is a combination of many aspects, the feature hierarchy provides a way to compare and 
contrast specific aspects of alternative designs and to perform "what if analyses by 
changing some aspects while keeping others constant. 

Each alternative design may be composed of several connected components (e.g., 
subsystems or low-level components). Each component comes from its own domain, 
where it is probably just one out of several alternatives in that domain. The component's 
distinguishing features have an impact on the features of the containing design. FAM 
maintains these interconnections, propagating changes so that the hierarchies remain 
mutually consistent, providing the user with a simple means of viewing the knowledge 
interconnections relevant to a given design task. 

While FAM provides a front-end for organizing a team's knowledge, the knowledge itself 
— specific goals, designs, or feature documentation — is maintained on the Web external 
to FAM and accessed through an easy point-and-click interface. Because this information 
may be output from or input to a diverse set of tools, or may be stored in diverse 
databases, FAM provides a number of methods for automated, non-intrusive rationale 
capture. 

One automated capture mechanism is the ability to import text files containing FAM- 
decipherable information.   We view this as a general purpose mechanism for loosely 



interfacing with discipline-specific design evaluation tools (e.g., cost models, 
performance analyzers, etc.). In addition, text import can be used a fast way to create a 
large database, where item-by-item input into the tool would be too time 
consuming. FAM also has a published Java-API, so tighter tool integration can be 
achieved, if desired. 

An e-mail capture capability provides a way to annotate FAM items (design alternatives, 
features, goals, tradeoffs) with commentary that occurs naturally in the e-mail dialogues 
between team members. E-mail that is cc'd to a FAM e-mail server is automatically 
stored and indexed at a designated URL. When the sender next brings up FAM, she is 
prompted (optionally) to assign portions of the message to one or more FAM items, using 
a simple highlight-and-click interface. 

We also implemented a rule engine that can be used to extend the semantics of 
alternatives, features, goals, components, and tradeoffs, either generically or for a specific 
project or domain. The rule engine is an adaptation of the Hendrix tool, which was 
developed under AFRL's Knowledge-Based Software Assistant Project. 

3.2 Enhancements to the ZD Functional Representation System 

In tailoring the ZD tool to support functional rationale capture and inter-operate with 
FAM, we implemented the following specific enhancements to existing capabilities: 

• Integration of functional representation with an automatic theorem prover 
The theorem prover that was chosen for this was the NQTHM of Boyer and Moore, 

• Compatibility Constraint Satisfaction Problem (CCSP) algorithm 
This was one of the main configuration capabilities of ZD1. We implemented it in the 
formalism of the theorem prover. 

• Proviso Proving and Propagation (PPP) algorithm 
The algorithm is derived from Allemang's dissertation. We implemented it using the 
formalism of the theorem prover. 

Further accomplishments reflected new capabilities for ZD. Some of these were inspired 
by other EDCS work: 

• Extension of the Rapide analysis of the X-Open 2-phase commit database reference 
architecture 

ZD represents a system in terms of states, changes from one state to another, and the 
agents that effect these changes. Because ZD allows this information to be 
represented formally, it is possible to reason about the circumstances in which an 
agent will bring about a desired state. 



At one point in the 2-phase commit strategy, the agent that will effect the state change 
is chosen. The choice is mediated by certain constraints on when agents may act. This 
raises the question: Is the set of agents given in the reference architecture, acting 
under these constraints, sufficient to ensure that the state change will occur as planned 
under all circumstances? 

ZD was extended with a capability to prove when this is the case. Specifically, ZD 
proves that the rollback and commit actions, when used according to the 2-phase 
commit strategy, guarantee the continued consistency of the distributed database. 

We also extended the example to accommodate some credible changes in the 
assumptions made by the X-Open reference architecture. For example, instead of 
assuming that each database will return either "yes" or "no" when queried "will you 
commit if asked?" we broadened the assumption to include a third possible result of 
time out without reply. ZD was able to prove that the original reference architecture 
would fail to ensure consistency in this case, while a slight modification of the 
architecture can be proven to ensure consistency. These results complement those 
obtained by Rapide for the same example. 

• Extension of ZD to accommodate knowledge sources 

At Georgia Tech, the development of SIRRINE (and before that, Autognostic) 
concentrated on the nature of knowledge sources in software systems. The ZD 
architecture was extended to reflect this capability by the addition of domains, which 
are shared sources of formal information. Domains can be used to reason about the 
correctness of connections spanning disparate parts of the analyzed system's 
architecture. 

• A simple form of a survivability determination 

This demonstration uses a functional representation to determine possible alternative 
plans. The formal representation, along with other functional representation 
capabilities (PPP and CCSP), allow the system to provide detailed information about 
the feasibility of each alternative. 

Survivability analysis is a natural application of a functional representation like ZD, 
since ZD represents not only what services are supplied by a component, but also 
what services were required by that component in its context. This means that when a 
component fails, the suitability of another component, which provides a different 
service, can nevertheless be evaluated. At the EDCS demonstration in 1999, we 
demonstrated a simple form of survivability analysis based on this principle. Because 
of the formal system in ZD (supported by a theorem prover), and the name-space 
bookkeeping done by ZD, it was possible to develop this capability in about a half- 
day. 

Other accomplishments include documentation of the use of ZD, including several 
examples involving Y2K issues. Details of the ZD system that implements these 



capabilities can be found in the ZD tutorial, available at the functional representation for 
software web page (www.synquiry.com). 

3.3 Integrated Rationale Capture and Representation 

Much of the effort expended in the FAMILIAR project was committed to integrating the 
system. One of the major goals of the project was to combine the alternatives 
management capabilities of FAM with the functional representation capabilities of ZD. 
Our strategy for this integration was to make use of as much EDCS technology as 
possible. In particular, we demonstrated the following: 

• Integration of FAMILIAR with ACME 

In its first year, FAMILIAR was in two parts, an alternatives management system and 
a functional representation system. A particular challenge faced in the project was 
how to share information about the decomposition of a system between these two 
components. Since the information that was to be shared concerned the architecture 
of the system, we decided to use the ACME architecture interchange language to 
mediate the connection. 

We provided a capability for FAM to express and export decompositions of 
alternative designs in ACME. ZD was given the capability to import these as ^ 
functional representations. Since ZD can make use of more information than simple 
decomposition, we integrated the system with the ACMEStudio tool. This allows a 
user to augment the decomposition description in ACME. 

Finally, we provided a means for ZD to report its findings as annotations in ACME. 
This again can be displayed by ACMEStudio. An example of the capability was 
demonstrated at the second EDCS Demo Days. The example now appears on the 
functional representation for software web page (www.synquiry.com). 

• Distributing the application 

The various parts of the integrated application described above have different 
requirements for the platforms on which they run. The most restrictive of these is 
ACMEStudio, which runs only on Windows (tm) platforms. A major challenge in 
engineering the system was to get all the pieces, running in different languages, to 
inter-operate. We took advantage of another EDCS technology, Franz Orblink, to 
mediate the inter-operation. ZD, which is written in Lisp, communicated with ACME 
through Orblink. ACME, which was available in Java, communicated with FAM 
(also in Java) natively. 

• Using ACME with an Orb 

In order to achieve the integration described above, it was necessary to be able to 
speak to ACME through a CORB A-standard Orb. Since ACME, as distributed by 
CMU, is not CORBA-enabled, we produced a CORBA-enabled version of ACME, 



which is available from the EDCS software repository that was set up at the 
University of Colorado for the second EDCS Demo Days. 

Translating ACME to ZD 

Even with the orb in place, it was necessary to translate from ACME into ZD. This 
requires navigating over the ACME data structure. We used the Demeter technology 
from Northeastern University to facilitate this translation. We generalized this use of 
Demeter to form a system called Persephone, for which a provisional patent 
application has been filed. 

1 Displaying ZD 

In order to be able to display ZD structures, we explored the use of several existing 
tools. For example, we can output ZD structures into LaTex that is suitable for the 
IBM TechExplorer. We can also output ZD structures in a format suitable for an early 
version of MediaDoc's diagram generator. 

3.4 Accomplishments vs. Objectives 

The accomplishments identified above contributed to realizing the project objectives, as 
follows: 

• Non-intrusive and cost-effective design rationale capture 

The alternatives management capability in FAMILIAR provides a multi-layer 
capability to track design rationale at arbitrary levels of abstraction. The e-mail 
capture and batch input capabilities of FAM allow much of this information to be 
recorded without additional effort on the part of designers. 

• Enhanced automated support for software/system understanding 

FAMILIAR can respond to queries about survivability, compatibility, and coverage at 
many levels of abstraction, due to the reasoning capabilities of ZD. 

• Enhanced ability to anticipate the impact of intended changes to a system 

ZD provides a means for determining the impact of a new component. This capability 
has been demonstrated through the survivability example described earlier. 

• Support for increasing formalization 

FAMILIAR supports incremental formalism. The alternatives management system 
allows designers to begin describing systems informally, and to place the alternative 
designs in relation to one another. As distinguishing features are identified, this can 
be made incrementally more formal by describing features of the alternatives, and by 
constraining the features with rules. 



Similarly, decomposition information can be added as needed to the design 
description. At this point, the structure can be translated into ACME, to allow the 
designer to add information about the relationships between parts of the architecture. 
Some of the FAM features are translated into formal information about the 
architecture components. The designer may then elaborate any of these features, as 
needed, to take advantage of the capabilities of ZD. 

Throughout this lifecycle, from identification of alternatives to formal specification of 
architectural properties, FAMILIAR provides incremental support. Any increase in 
formalism results in increased feedback from the system. This stands in contrast to 
many formal systems, in which no benefit is delivered until the entire system has 
been expressed formally. 

• Traceability of evolving design decisions 

FAMILIAR provides a consistent way to represent detailed as well as high-level 
design decisions. Because successive "snapshots" of a design may be recorded as 
alternatives, FAMILIAR'S support for comparing and contrasting alternatives 
provides insight into the evolution of the design. 

• Decision support through disciplined evaluation of design alternatives 

FAMILIAR provides a systematic way to specify the features of a design alternative, 
so that it can be evaluated in a disciplined way. Feedback obtained at any level of 
formalism can be recorded as additional information in the design description for 
future consumption. 

• Increased integration and feedback between lifecycle phases 

We have applied the FR description language, enhanced with the FAM schema of 
alternatives, features, and tradeoffs, to problems at various levels of abstraction, from 
high-level architecture to algorithm design. This shows that the FAMILIAR concepts 
can be used throughout the software evolution lifecycle, which we expect will 
facilitate iteration between phases. 

3.5 Accomplishments vs. Evaluation Criteria 

In the FAMILIAR proposal, we identified potentially quantifiable goals of accuracy and 
explanatory power. Although we learned a great deal from using FAMILIAR within our 
own efforts (see Section 4), we did not have the resources to run a pilot development 
project that would test these process characteristics. 

4. APPROACH 

The project was structured into three one-year phases, with a demonstration of 
capabilities at the end of each phase. The first year's work was driven largely by lessons 



learned from previous work on KAPTUR and ZD. Years two and three were driven by 
feedback from the demonstrations and lessons learned during the preceding year's 
development. 

4.1 Year One: Con-ops and Initial Prototype 

We began the project by developing a Concept of Operations (con-ops) for the 
FAMILIAR system, and then evaluating alternative approaches to implementing it. One 
of our earliest decisions was that the alternatives management part of FAMILIAR should 
be developed anew rather than built on existing KAPTUR code. There were several 
reasons for this decision. The most recent version of KAPTUR was a proprietary system 
for which we did not have immediate source code access. While such access might have 
been negotiated, we knew that the changes to be made to the system (based on lessons 
learned) were substantial enough to put into question the value of a source code license. 
Developing the code anew would allow us to write the alternatives manager in Java, with 
all ofthat language's expected advantages for platform portability and web compatibility. 

The initial prototype of the Formal Alternatives Manager (FAM) was specified in a 
document that translated the lessons learned from KAPTUR into functional 
recommendations for the new system. One of the most important recommendations was a 
more rigorous treatment of features. While in KAPTUR features were simply 
uninterpreted text phrases, in FAM the assignment of features to alternatives became 
subject to certain semantic consistency checks. Following review of the specification, the 
software was implemented in an ad hoc Java-based design. The class structure of this 
initial prototype was an artifact of decisions made with the predominant goal of 
demonstrating the tool at the first EDCS Demo Days. While not very maintainable, the 
prototype showed the functionality that we wanted to demonstrate. 

Concurrent with this activity, work began on a version of ZD tailored to functional 
rationale capture. The starting point for this was a system called ZD 1, which had been 
developed by Beat Liver at the Swiss Federal Institute of Technology and Swiss 
Telecom. Liver's work was based on Dr. Allemang's 1990 dissertation at the Ohio State 
University. ZD 1 provides capabilities for software configuration, diagnosis, and 
survivability analysis. (It is described in Liver's dissertation, Thesis #1519, Ecole 
Polytechnique Federale de Lausanne, 1996.) 

Formal calculations in ZD 1 were based on a type calculus that was not fully automated. 
Running the system relied on interactions with a human user who would provide answers 
to simple type-inclusion queries. For example: "Is x a member of the set {x, y, z}?" or "Is 
the set of integers from 0 to n a subset of the set of positive integers up to n-1". In the 
initial phase of the FAMILIAR project we extended ZD1 to overcome such limitations. 

We considered redeveloping ZD in Java to permit tight integration with the alternatives 
manager. We rejected this approach because, as an inference system currently written in 
Lisp, ZD was not particularly amenable to implementation in an imperative programming 
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language. Moreover, we expected that in due time there would be adequate tools for 
integration between Lisp and Java-based systems, and it was not a good use of research 
funds to try to achieve this on our own. It was necessary, however, to port ZD from a 
custom Lisp dialect to Common Lisp, so that we could take advantage of off-the-shelf 
integration tools such as CORBA and achieve a reasonable level of platform 
independence. 

Instead, makeshift integration mechanism using Unix pipes was put into place to 
demonstrate the interaction of the alternatives manager and ZD. While not a maintainable 
solution, and certainly not operating system independent, this form of integration allowed 
us to demonstrate the FAMILIAR concept in action, obtain feedback, and plan for a more 
principled design in the next phase. 

4.2 Year Two: Design Rationalization and Usability Enhancements 

Considerable effort was spent during the second year in developing a clean, maintainable 
design for FAM, the alternatives management part of FAMILIAR. The FAM user 
interface was still implemented using the Microline Component Toolkit (MCT) because 
we did not believe that Sun's Swing technology was sufficiently mature. However, we 
designed the new FAM so that MCT could be easily replaced by Swing when the time 
was right. In addition to paving the way for this transition, this approach allowed us to 
take advantage of the underlying Swing architecture, a form of the model-view-controller 
paradigm into which Sun had put considerable thought. 

During this re-design of FAM, we made changes to the user interface in response to 
problems that beta-testers had voiced concerning the initial prototype. For example, the 
assignment and un-assignment of features to design alternatives, which had previously 
been achieved by special buttons, was changed to be done by copy/paste/cut/delete in the 
Features of Design Alternative window. (This itself was a compromise since we really 
wanted to use drag-and-drop, but it was not available in the MCT library nor in the 
standard Java AWT classes.) Error reporting was made more consistent, with two levels 
of information available (initial brief message and on-request detailed explanation). 

Several major functional additions to FAM were implemented in this phase. Chief among 
these was a form of non-intrusive rationale capture based on e-mail. We came to this idea 
by analyzing our own patterns of design discussions, trying to explain our own resistance 
to using the initial prototype of FAM. We found that, next to face-to-face dialogue, e- 
mail was the team's de facto medium of choice for hammering out design decisions. We 
therefore implemented a capability to capture e-mails that were cc'd to a FAM address. 
The capture capability allows a FAM user, at her leisure, to map arbitrary portions of the 
e-mail messages to the design alternatives (nodes in the FAM database) that they refer to. 
Subsequent users then see these message snippets as annotations to the design 
alternatives. 

11 



The e-mail capture capability assumes that the FAM database is already populated. Use 
of the initial prototype showed that this too was a burden on software designers, 
especially when schedules are tight and the team is focused on finding the right solution, 
not on documenting its reasoning. The population process is especially burdensome when 
there are a lot of alternatives and features. While the user interface of FAM supports fully 
interactive tree editing to input this information, the process is not fast or easy enough to 
permit rapid input of large amounts of information. 

In response to this scale-up problem, we implemented a batch-input function whereby 
FAM either creates or extends a database to include information contained in a tab- 
formatted ascii file. Tabs are used to specify the tree structure. This enables designers to 
use a highly efficient input mechanism, the text editor, to specify the alternatives and 
features being discussed by the design team. 

Some viewers of the initial demonstration suggested that more semantics were needed for 
FAM features. For example, users wanted to be able to specify properties of feature 
combinations (good, bad, allowed, not allowed, etc.). Some viewers suggested that FAM 
could automatically generate design alternatives by blindly combining features, and then 
prune the resulting alternatives space either automatically, through rules, or interactively 
through user choice. 

In response to these and other suggestions, we implemented an open-ended rule engine in 
FAM. The engine provides a simple interface that allows users to create their own 
constraint and transformation rules, which provide increased semantics to the FAM 
alternatives and features. The FAM rule engine is a port of the Hendrix system, which 
had been developed for AFRL under the Knowledge-Based Software Assistant (KBSA) 
program. To work with FAM, the Hendrix rule-creation and execution functions were 
ported from the CLIPS production system language to the Java Expert System Shell 
(Jess), a Java-compatible CLIPS lookalike. It is important to recognize that the FAM rule 
engine does not duplicate or replace any ZD functionality. It serves as an intermediate 
vehicle for enriched, but not fully formal, semantics. This is consistent with our goal to 
support the evolution from informal to formal semantics as a domain matures. 

Concurrent with these enhancements to FAM, ZD was integrated with the architecture 
language ACME, and the supporting ACMEStudio tool. ACMEStudio provided a 
graphical interface for specifying component inter-connections within design alternatives 
as well as for displaying the results of a ZD analysis. In addition, the import/export 
between ZD and ACME provides a basis for future integration with other tools. 

Finally, in preparation for the second EDCS Demo Days, we developed two realistic 
scenarios of military system evolution. The scenarios show how FAMILIAR reduces 
effort and improves the resulting decisions. The first scenario involves a surveillance and 
data fusion situation in which correct interpretation of data requires the introduction of a 
new processing capability. Since the host on which this capability resides is of a different 
type from the rest of the system, connectivity must be established between the systems. 
FAMILIAR uses functional representation to analyze a proposed solution, identify 
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disconnects, and suggest a fix. The second scenario illustrates the use of FAMILIAR in 
the design of a distributed C3I system. FAMILIAR generates alternative architectures for 
the system, given a range of available components. FAMILIAR then assists the designers 
in pruning the space of alternatives through tradeoff analysis, using information captured 
from ongoing e-mail discussions. 

4.3 Year Three: Improved Con-Ops and Client-Server Architecture 

The primary lesson that we obtained from feedback at the second EDCS Demo Days was 
that FAMILIAR was too passive. It did not clearly enough support an explicit process 
with well-defined payoffs. A typical reaction was something like, "It is very nice, but 
what exactly do I do with all this information?" Even worse was the comment, "So you 
put all this information in there, but what exactly does the tool itself do?" 

In the final year of the project, we revisited the Concept of Operations and developed a 
more explicitly process-based user interface. The new con-ops and interface are based on 
the idea of knowledge recycling. In this approach, one solves a problem (such as a design 
or planning task) by looking for existing artifacts that can serve as a part or all of the 
solution, perhaps with some adaptation. Having solved the problem, one records it in the 
database so that it is now available for similar searches in the future. 

The new user interface contains a diagram illustrating this process. Another diagram 
illustrates the sub-process of evaluating potential solutions by comparing and contrasting 
them (the heart of the rationale capture process). These diagrams, as well as the user's 
current position within the process, are visible to the user at all times. The user therefore 
knows where he has been and where he should be going. 

A related critique of the FAM user interface was the explosion of many windows with 
inter-related information. In the first two versions of FAM (versions 0 and 1), each type 
of information was displayed, upon user request, in its own window. For example, each 
of the following types of information was displayed in its own window: 

• Alternative designs for a given system type 
• Features of a given system type 
• Features of a particular alternative 
• Components of a particular alternative 
• Goals of a given system type 
• Tradeoffs 

Modification to the information in one window would automatically propagate to update 
the related information in all other windows. Nevertheless, the screen quickly became 
cluttered with numerous windows, and it became hard to keep track of what one was 
looking at, and how it all fit together. 
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In FAM 2, the most recent version of the alternatives manager part of FAMILIAR, the 
multiple windows are replaced with a single integrated display divided into frames with 
sliding borders. Each type of information has a fixed frame position, so that the user 
knows to look there for that type of information. Because the frames are not overlapping, 
all related information is visible at all times. However, the user can slide the borders to 
view more of a certain type of information and less of another. 

The individual Features of Alternative Design displays were dispensed with. Instead, the 
global Alternatives and Features frame are now linked so that when a single alternative is 
selected, all features of that alternative are automatically highlighted. Conversely, when a 
single feature is selected, all alternatives possessing that feature are automatically 
highlighted. This linkage can be toggled on and off so that it does not interfere with the 
process of updating the database. 

Another problem that we tried to address in this phase was the intrinsic intrusiveness of 
having to use a standalone tool, distinct from the tools already on the designer's desktop, 
in order to capture design rationale. Our solution to this problem was to make 
FAMILIAR a web application, accessible through a web browser at a URL that is 
specified at install time. We learned early in the project that applets were not an effective 
means of implementing complex functions, and that the trend in web applications was 
towards server-side processing. We therefore re-designed FAM to support a client-server 
architecture with a light-weight user interface. At the same time, we moved from the 
MCT widgets to Swing in order to keep in step with the latest Java developments. 

The conversion to a client-server architecture was only partially successful, for reasons 
discussed below under Lessons Learned. We believe it remains the correct approach, but 
we realize now that an effective implementation requires a more thorough design change 
than originally thought. 

5. LESSONS LEARNED 

This section summarizes the main lessons that were learned during the course of the 
FAMILIAR project. Some of these were learned early and were addressed, to a greater or 
lesser extent, in the second and third years. Others point the way to future work. 

5.1 Non-Intrusive Rationale Capture 

The greatest obstacle to systematically capturing design rationale is the perception that it 
interferes with the momentum of the design process itself. We have tried to address this 
issue by separating the capture of raw data from the process of structuring and analyzing 
it. For example, FAMILIAR captures e-mail messages and places them in an archive, but 
allows the user to defer the process of annotating FAMILIAR data with portions of the 
message. This is an example of the overall rhythm of alternating production and 
reflection cycles that characterizes an effective software design process. 
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A more detailed analysis of the issues surrounding non-intrusive rationale capture was 
presented in the Final Report of a related project, the Phase ISBIR project entitled 
Capturing Design Rationale in a Multi-Media Design Narrative. There, we considered 
the cognitive and motor barriers to articulating rationale in the heat of software 
development, and we made several recommendations towards overcoming the barriers. 
The recommendations are fully consistent with FAMILIAR, and carry the simple idea of 
e-mail capture much farther. Although this has not been the main emphasis in the 
FAMILIAR project, we now recognize that a well-developed non-intrusive capture 
capability is a prerequisite for a tool like FAMILIAR to be widely used. 

5.2 Integrated Display 

Part of the value provided by FAMILIAR is its automated maintenance of inter-related 
information, and its support in visualizing the web of design information. Our naive 
assumption at the beginning of the project was that, in the absence of sophisticated 
display mechanisms, we could use basic window-icon-menu-pointer (WIMP) techniques, 
and the user would benefit simply from the presence of the information. 

We discovered that this is not really the case. The multiplicity of windows creates a form 
of information overload in which the user quickly loses track of what information is 
being displayed, and where it can be found. We responded to this problem by changing to 
a single-window, multiple-frame user interface. This is less general than the multiple 
window approach because each type of information corresponds to a particular frame 
position. For example, there is only one Alternative Designs frame, one Features frame, 
and one Tradeoffs frame. (The user can get around this limitation by creating multiple 
web-browser windows, but we have not considered this as part of the recommended 
usage pattern.) 

Although the new interface is less general, we believe this is an instance of the principle 
that Less is More. Viewers of the FAMILIAR demonstration at the third EDCS Demo 
Days responded favorably to the new interface. Those who had seen the multi-window 
interface concurred that the integrated display was much more comprehensible. Some of 
the limitations of the integrated display were overcome through interface dynamics (in 
effect, using time instead of screen space as a dimension). For example, the individual 
"Features of an Alternative Design" windows were replaced with automatic highlighting 
of the features of a selected alternative, within the global Features frame. 

The integrated display clarifies the value provided by FAM as an information server. The 
Features and Tradeoffs frames, as well as the separate browser window in which URLs 
for selected alternatives are displayed, are all dynamically updated to reflect the currently 
selected alternatives. The user no longer has to request (through a button press) to see any 
of this information. As different alternatives are selected and the entire display changes, a 
picture of the data inter-relationships is conveyed with less prompting from the user than 
in previous versions. 
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Our long-term goal is to find novel visualization techniques, possibly using 3-D and 
animation, to provide even more highly integrated displays. This is an area for 
experimentation, which would be an important part of any follow-on work. 

5.3 Pro-Active Guidance to the User 

With the earlier versions of FAMILIAR, there was some confusion on the part 
demonstration viewers as to where the data in the tool came from, and how it was 
supposed to be used. Part of the confusion was an artifact of the demonstration setting, 
since we did not show the process of populating the tool with data. We did demonstrate 
the mechanics of entering data into the tool, when asked. However, the essence of the 
process is not data entry but rather the formulation of design alternatives through 
discussion, research, and reasoning. An integrated demonstration with a tool like Orbit or 
WinWin (two other EDCS projects) might have been an effective way to show this 
process, but limitations of time and funding prevented it from happening. 

Demonstration viewers were therefore presented with an already populated database, and 
the demonstrations focused on the use of the recorded information. However, because the 
information was already recorded, and therefore the "answers" that FAMILIAR provided 
were already determined, the demonstrations lacked a convincing message of value 
provided. 

Our analysis of this problem convinced us that it went deeper than demonstration 
mechanics. FAMILIAR, in its first two versions, resembled a spreadsheet tool. It was 
predominantly a passive system, in which the user entered information and specified 
links between certain information elements. The tool assisted the user by automatically 
maintaining values as determined by these links and by computing other values (such as 
tradeoffs). In addition, the ZD portion of the tool provided automated analysis of the 
information entered. There was, however, no explicit indication of the recommended use 
of the computed information (tradeoffs) or of the analysis results. A potential user who 
was already attuned to the implied methodology would see the value of the tool, but one 
who was not so attuned would not "get it." 

This lesson was known to us from the days of KAPTUR. It did not find its way into the 
initial con-ops for FAMILIAR, perhaps because with so many other operational changes, 
we were not sure that the same problem would arise. When it became apparent that it did, 
we were able to bring to bear a past analysis of the problem for KAPTUR and propose an 
explicit process-directed user interface. 

Under this interface, two levels of process diagrams serve as the vehicle for user 
commands. Each node in the diagram corresponds to an activity supported by 
FAMILIAR. The node acts as a button invoking the corresponding FAMILIAR function. 
Arrows between nodes represent the recommended flow of activities. Since the process 
diagrams are always displayed, they provide the user with a constant reminder of the 
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current activity, the activities that led up to the current one, and the recommended 
activities to follow, culminating in a problem-solving goal. When the goal is reached, the 
user has clearly accomplished something, and the role of the tool in helping to achieve it 
is apparent. 

5.3.1 Pros and Cons of a Process-Based Interface 

While we believe that the process-directed user interface is a major step forward in 
FAMILIAR'S usability, there is a potential drawback to it, which we encountered during 
the third EDCS Demo Days. At least one viewer was concerned that any tool she acquire 
be tailorable to her organization's established processes. The explicit process diagram in 
the FAMILIAR display set off an alarm for this viewer. She asked us whether the process 
represented in the diagram was built into the tool or whether it could be modified. She 
expressed dissatisfaction with our answer that it was built into the tool. 

To some extent, this was a problem of misunderstanding. The process represented in the 
FAMILIAR user interface is a very general pattern of knowledge recycling and 
systematic evaluation of alternatives in solving a problem. It is present, implicitly, in 
virtually any effective engineering process. It is made explicit in the FAMILIAR user 
interface because that is precisely the process that FAMILIAR aims to support. We do 
not believe that the "hard wiring" of this process into the user interface in any way limits 
the settings in which the tool can be used. However, its appearance may suggest this to 
potential users. Further enrichment of the interface, with tool tips and help text, could 
help mitigate this problem. 

Another potential drawback of the explicit recommended process is that it may 
discourage novel and unexpected uses of the tool. The discovery of such uses is a well- 
known phenomenon in the evolution of successful tools, and we do not want to 
discourage it with FAMILIAR. However, at this early stage of the tool's existence, the 
problem of conveying the intended use must take precedence so that people will start to 
use the tool in the first place. 

5.4 Need for DBMS Functionality 

FAMILIAR may be viewed as an intelligent scratchpad for trading off design 
alternatives. While the principles of knowledge recycling apply to the work of a single 
designer as well as to that of teams, the need for tool support increases when there are 
multiple stakeholders with different goals, preferences, experience, and rationales. 
FAMILIAR was always envisioned as a multi-user tool, in which alternatives were 
proposed by different participants in the design process. 

Multi-user access raises the issue of preventing concurrent conflicting updates to the 
database. In Version 1 of FAM, a modest level of support was provided by means of lock 
files. The locks ensured that any single device type (this is FR terminology for a type of 
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system, identifiable through its functional goals) could be modified by at most one user at 
a time. Because a device consists of components that are instances of other device types, 
the locks were required to extend to all devices in a device group. Device groups were an 
artifact that we created to refer to a hierarchy of devices. 

We were never happy with the notion of a device group, and it disappeared from the 
user's view in Version 2. It was replaced with the idea of a single, corporate repository of 
design information. Unfortunately, this makes the locking capability even more crude 
than in Version 1. Locking the entire corporate memory for the duration of an entire user 
session is not an acceptable solution to providing data integrity. 

What is clearly needed is a finer-grained locking capability. More generally, FAMILIAR 
would benefit from the kinds of multi-user, data integrity, and query support that an off- 
the-shelf Database Management System (DBMS) provides. Adding a DBMS to 
FAMILIAR should not be difficult, since the database currently consists simply of 
serialized Java objects, and Java itself provides an interface to ODBC, which many 
DBMSs support. 

5.5 FAMILIAR as Corporate Memory 

One of the challenges in describing FAMILIAR to potential users is to characterize the 
tool in terms that are already meaningful to them. This depends largely on the type of 
work the user does. FAMILIAR may alternatively be described as a decision support 
tool, a rationale capture tool, a knowledge management tool, a case-based reasoning tool, 
a domain modeling tool, a component repository, and an intelligent portal (see Section 
5.6). FAMILIAR has some features of all of these, and yet it does not exactly fit the 
stereotype of any of these categories. 

A common denominator in all of the descriptions is the idea of a corporate memory with 
pro-active support for problem solving. This is why we based the process-directed user 
interface of Version 2 on the idea of knowledge recycling. Tradeoffs and rationale 
capture play an essential but frequently unrecognized role in a corporate memory system. 
The motivation for "remembering" things in the system is to make use of them in the 
future. The purpose is to reconsider past decisions or to apply previous successes to new 
situations. In either case, it is important to understand why things were done as they were, 
and to evaluate potential alternatives. This relationship between corporate memory and 
rationale is the core idea of FAMILIAR, and we discovered that it takes a non-trivial 
effort to convey it to many potential users. 

A related challenge is describing the intended and/or potential scope of FAMILIAR. As 
an EDCS tool, it was developed to support software evolution, as a way of evaluating 
alternative designs. Other kinds of software artifacts, besides designs, can also be 
represented as alternatives in the FAMILIAR database. 
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We have also demonstrated the application of FAMILIAR to logistics planning. When 
viewed as a decision-support or case-based reasoning tool, FAMILIAR can be seen to 
provide value to a wide range of problem-solving tasks. Alternatives are then to be 
viewed as alternative solutions to a given type of problem. To the extent that a problem 
can be decomposed into sub-goals that are functionally composed, even the FR 
component of FAMILIAR may be applicable. 

This generality is, we have found, both a strength and a liability. It is a strength in that we 
can make a case for the use of the tool in many situations. It is a liability because people 
usually do not grasp generalities that they have not arrived at themselves. Selling 
FAMILIAR as a general-purpose corporate memory tool is probably not an effective 
communication strategy. 

5.6 FAM as an Intelligent Portal 

The recent emergence of portal technology for the web provides a handle for 
communicating the core idea of FAMILIAR. Viewing the web as a gigantic corporate 
memory (or as a vehicle for implementing an organizational memory) makes apparent the 
need for tools that focus attention on relevant information. Version 2 of FAM provides an 
explicit step in this direction by including a keyword-based search function. It can be 
argued, however, that the ability to compare and contrast items found on the web is as 
crucial as a search capability, since it provides a basis for filtering. Goal-oriented 
comparison immediately leads to consideration of tradeoffs and rationales, which is the 
heart of FAM. 

In order to pitch FAMILIAR as an intelligent portal, we would have to populate it with a 
critical mass of web-based information. The information would have to be of a type that 
users expect to access via a portal. It is conceivable that in the future, a web-based market 
of software components could serve as such an application. Even today, web-based 
software archives contain enough alternatives to warrant FAMILIAR-type support in 
choosing components. (The obstacle in that case is the absence of economic incentive to 
implement the support.) 

5.7Design Trace vs. Domain Model 

Closely related to the view of FAMILIAR as a corporate memory tool is the question of 
whether it supports system design or domain modeling. The underlying methodology 
draws a parallel between these two activities, and places FAMILIAR exactly in the 
middle. System design is a form of domain modeling, according to this methodology, 
where the domain consists of the space of possible designs. Conversely, domain 
modeling involves explicitly or implicitly envisioning alternative designs for a certain 
type of system. The difference, in principle, is one of scope. 
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In reality, system design and domain modeling are done by different people, at different 
times, funded by different sources, using different tools. The purpose of FAM is to bridge 
this gap. As such, one can consider the message to be "Let's bring the domain modeling 
back into system design." This is a call to place greater emphasis, time, and attention on 
the reflection cycle during software development, to ask on a continual basis, "What have 
we done here? How could we abstract it?" 

The message can conversely be construed as "Let's bring the system design back into 
domain modeling." This is a call to include considerations about system structure 
(architecture and components) in the domain modeling process, which is sometimes 
limited to descriptive features and can thereby become divorced from the harsh realities 
of system development. 

Positioning FAMILIAR mid-way between system design and domain modeling makes its 
role ambiguous, at least in the current state of the world. As in describing the tool as a 
form of corporate memory, the ambiguity is both an asset and a liability. It is an asset 
because it focuses attention on some important methodological truths (summarized in the 
messages above). It is a liability because, given the current way in which projects are 
organized, users do not clearly see how, when, or why to use the tool. Specifically, are 
they to use it during design to thrash out alternatives within a specific project, or during a 
domain modeling activity in which the products of multiple projects are considered as 
input? If the answer is "both," how are the project-specific traces of evolving alternative 
designs supposed to find their way into a cross-project organizational memory? 

These issues were addressed in detail in the Final Report of a related project, a Phase I 
SBIR entitled Models for Interoperable Rationale, Inference, and Alternative Designs 
(MIRIAD). That report identified ways to extend FAMILIAR to support the transition 
from single-project to multiple-project mode and back. 

5.8 Relationship with WinWin 

Positioning FAMILIAR in relation to WinWin remained an issue throughout the project. 
Both tools are billed as rationale capture systems supporting the systematic evaluation of 
alternatives. In fact, the tools are quite different in terms of the functions they support. A 
consensus developed over the life of EDCS that they complemented each other. For 
example: 

• FAMILIAR has a more semantically structured way of describing alternatives 

• WinWin provides explicit support for multiple concurrent users 

• FAMILIAR organizes information primarily in terms of product attributes 

• WinWin organizes information around issues arising in a project 

Where the consensus did not quite gel was in the optimal way to integrate the tools. Both 
projects agreed upon a straw-man mapping between WinWin and FAMILIAR data types. 
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Although it was expected that with experimentation, the mapping would probably 
change, the agreement was considered a good start. That the integration never occurred 
was an unfortunate function of priorities within each project. 

5.9 Need for Rules 

One of the first steps taken to move FAM beyond KAPTUR was to implement rules 
governing the assignment of features to alternatives. These rules constituted a 
subsumption check to the effect that a more specific feature could not be assigned to a 
more general alternative. In other words, the following pattern is not permitted to occur: 

Alternative A      -v. Has Feature F 

Specializes to       ^^\^^^^ Specializes to 

* /^^     + 
Alternative B      ^Has Feature G 

There are two degenerate cases of the check: A single feature cannot be explicitly 
assigned to a parent alternative and to one of that alternative's descendants. A single 
alternative cannot be assigned both an ancestor feature and one ofthat feature's 
descendants. Together, these rules ensure that descending the Alternatives Tree 
represents specialization. Equivalently, they ensure that the links in the Alternatives tree 
represent an "is-a" relation. 

The subsumption rules were hard-coded into the Java implementation of FAM. Later, we 
implemented a similar set of checks for components of alternatives. There is an 
analogous rule to ensure that lower-level features are at least as good or at least as bad 
with respect to any goal as a higher-level (ancestor) feature. 

All of these rules, especially the last, were called into question by at least some of the 
viewers of our demonstrations. Some viewers suggested additional types of rules, such as 
inferences about feature combinations, pruning of infeasible alternatives, and alternative 
computations of tradeoffs. These considerations led us to conclude that an open-ended 
means of specifying and implementing rules in FAM was needed. We accomplished this 
in the rule engine, which is an adaptation of the Hendrix tool developed under the KBSA 
program for AFRL. 

5.10 Feature Combinations 

At the demonstration during the first EDCS Demo Days, we received feedback from 
viewers that the tool needed more support for reasoning about feature combinations. 
Specifically, they wanted to be able to assign a "goal satisfaction" value not to an 
individual feature but to a combination of features. The tradeoffs of an alternative would 

21 



then take account of these values, factoring in the various combinations of features that 
an alternative possesses. 

This request was communicated to us not as something desirable but as something 
essential for a methodologically sound tool. The point was made that an individual 
feature's contribution to (or detraction from) a particular goal is frequently meaningless. 
It must be considered in the context of the other features with which it co-exists. 

We did not implement this function by the end of the project. However, by implementing 
the rule-engine we took a step towards supporting it. This was one of several potential 
enhancements to the decision support methodology (see Section 5.10, Tradeoff 
Calculations, for another). Since we expected others to arise, we thought it better to 
implement an extensible mechanism for specifying the methodology than to implement 
specific changes in the Java code. 

The rule engine, implemented in Version 1.1 of FAM, does not achieve the requested 
capability. With some simple modification, however, it could. We envision providing the 
FAM user with the ability to assert facts about the database. A simple user interface for 
this process would have to be provided. Once the facts are asserted, they can be used as 
conditions that trigger the firing of rules. 

For example, facts asserting the goal-satisfaction values of certain feature combinations 
could be used in rules that compute tradeoffs. The FAM rule engine does not currently 
provide a high-level user interface to specify such rules, which involve arithmetic 
processing, but it could be extended to do so. (The current high-level user interface 
supports the specification only of structural pattern detection and transformation rules.) 

5.11 Tradeoff Calculations 

FAM computes a goal-satisfaction value for each alternative by averaging over all of the 
alternative's features. As observed in Section 5.9, this approach assumes that feature 
interactions do not have an impact on the realization of a goal. Clearly, this is invalid as a 
blanket assumption. 

Another weakness of the current tradeoff algorithm is that, after a value has been 
computed for each goal, the overall "goodness" of an alternative is computed by 
averaging over all goals, factoring in each goal's priority. In real-world decision 
situations, goals cannot accurately be given absolute priorities or weights. An alternative 
approach, known as the Analytic Hierarchy Process (AHP), is based on the idea that the 
evaluation of alternatives inevitably involves compromise. Therefore, a more realistic 
way to express priorities is to describe the relative importance of one goal to another, in a 
pair-wise fashion. Pair-wise ranking addresses the question, "If you must compromise on 
one of these two goals, which would it be, and how severe would the compromise be?" 
The AHP algorithm is a way of aggregating the pair-wise precedence relations in order to 
produce a composite "goodness" value for a proposed solution. 
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Replacement of the current algorithm with AHP would not be difficult. In fact, the 
weighted-average currently used was intended simply as a placeholder to illustrate the 
use of the tool. We assumed that a more sensitive algorithm could be found in the 
decision support literature and plugged in where the averaging algorithm is currently 
used. 

5.12 Need for a Lightweight User Interface 

We found that FAM was too large to run realistically as an applet. Running it in a 
browser required the Sun JDK plug-in, and even so it took a long time to load and, 
sometimes, exceeded available memory. Running it as a Java application also involved a 
significant wait while the classes loaded. 

A rationale capture tool is already at a disadvantage with respect to user acceptance 
because the process it encourages appears to interfere with the progress of software 
development. An inordinately long load time for the tool is enough to ensure that it will 
not be used. This experience led us to conclude that FAMILIAR required a lightweight 
user interface that would load rapidly, preferably within a browser so that it did not 
appear as a separate tool. 

The idea of a lightweight user interface also seemed compatible with a client-server 
architecture, which in turn would support integration with a DBMS than a better 
monolithic architecture. As we discovered, a lightweight user interface was not as 
immediate a consequence of a client-server architecture as we might have expected. This 
issue is discussed in Section 5.13. 

5.13 Java Fragility 

Working in Java provided many benefits, such as the ability to implement window-based 
interfaces rapidly using built-in language capabilities, and the ability to work with objects 
while not worrying about garbage collection. We learned, as many developers did during 
the same period, that applets do not really deliver on their promise. They take too long to 
download, and they stress browser performance and memory allocations to the point of 
exceptions or even crashing. 

We developed Versions 0 and 1 of FAM to run as either an applet or an application. 
Running as an application is undesirable from the point of view of integration with 
existing desktop environments. Running as an applet proved impossible without using 
Sun's JDK browser plug-in, and only barely feasible with the plug-in. 

We found that this was still true with the intended "lightweight" user interface of FAM 
Version 2. Because the user interface employed several Swing classes (such as JTree), 
the total volume of the applet, in terms of number of bytes to be downloaded, was not at 
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all "light." Using the JDK plug-in helps alleviate this problem because a local copy of 
Swing can be used, but this limits platform universality, the very benefit that running as 
an applet was intended to provide in the first place. 

Another architectural problem prevented the Version 2 user interface from being as 
lightweight as we had expected. The problem results from using 1) Swing in the user 
interface, and 2) Remote Method Invocation (RMI) to communicate with the server. 
(Presumably, a similar problem would occur if RMI were replaced by CORB A calls). 

The problem is as follows. The Swing architecture requires each user interface object 
(such as a tree) to have a corresponding model object, which is the logical representation 
of the information displayed in the widget. The goal of the client-server architecture is to 
move all significant processing to the server. It therefore makes sense to have the model 
objects reside in the server. This proved impossible to implement using RMI because of 
incompatibility between the interfaces that Swing models have to implement, and the 
interfaces that remote objects in RMI have to implement. In particular, exception 
handling proved impossible to implement with this design. 

As a next-best approach, we tried keeping the model objects on the client side, but 
retaining the data objects (essentially, the individual data items that are linked together 
into trees, lists, etc.) on the server side. This too proved to be infeasible because of the 
frequency with which the model objects invoke methods of the data objects. The coupling 
between models and data is too tight to split over a remote interface. We therefore had to 
include widgets, models, and data in the client side, resulting in a user interface that was 
only slightly smaller than in previous versions. At the same time, because the server is 
now responsible for maintaining persistence and handling search requests, the data 
classes have to be replicated on the server side. This is not a desirable architecture. 

We reached the conclusion that a truly lightweight user interface, and a maintainable 
client-server architecture, require dispensing with the applet entirely. This implies that all 
displays would be achieved through HTML, which is itself not a happy prospect. It might 
be possible to retain the existing tree processing logic by instantiating the model objects 
on the server side. Display update events would then be translated into dynamically 
generated HTML. Whether the HTML should be generated on the server side or through 
browser scripts would be a design issue. 

The broader conclusion to be drawn from these considerations is that Java/web 
application technology is still in an immature state. While it is advancing rapidly, its use 
raises questions of stability and reliability for users whose satisfaction is our primary 
goal. 

5.14 Impact of Using a Theorem Prover in ZD 

Several technical advantages were gained by using a theorem prover to support the 
formal layer of ZD. For example: 
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The theorem prover permits a more compact and explicit representation of the 
information used in the Compatibility Constraint Satisfaction Problem (CCSP). This 
helps to clarify the algorithm, much of which concerns the propagation of information up 
and down the functional decomposition tree. When the underlying formalism is expressed 
in a theorem prover, propagation information can be expressed concisely in terms of the 
ordering of expressions in the theorem prover's language. 

Much of the recursive Proviso Proving and Propagation (PPP) algorithm involves 
keeping track of the relationships between variables in various contexts. The contexts are 
defined by logical expressions in the language of the theorem prover. The algorithm was 
simplified by NQTHM's support for re-writing expressions given in one context into 
another context. 

The 2-phase commit example was a particular challenge for the theorem prover. In this 
example, the designer uses FR to express the ways in which a certain state can be 
reached. The designer also specifies the conditions under which the state must be 
achieved in order to meet the requirements of the system. ZD then determines whether, 
taken together, all of the ways to achieve the state are sufficient to cover the desired 
conditions. This form of query can be difficult for a general-purpose theorem prover. ZD 
uses information from the functional representation to direct the theorem prover's search 
so that it can return an answer. 

5.15 Interoperability of Formal Languages 

In the FAMILIAR proposal, we suggested allowing components at different levels to be 
described in different logical languages. The motivation for this was that it would be 
common for the designers of components to express a component's function using the 
language most suited to that function. 

In hindsight, this proposal seems ill advised. Many of the ZD algorithms, such as CCSP 
and PPP, rely in subtle ways on the details of the theorem prover. The dependencies 
include ways in which the algorithms manage information across levels. Rather than 
disrupt these dependencies, we achieved a similar goal in a different way. Providing a 
single but very expressive formalism such as that provided by NQTHM allows the 
designer to specify constraints that describe the terms used at each level. The introduction 
of domains allows whole sets of terms to be defined (and constrained) as a unit, thereby 
allowing for consistent sets of terminology to be used at each level. 

6. FUTURE DIRECTIONS 

Several areas of future work were identified in Section 5 along with the lessons learned 
that motivate them. In this section we summarize the most important of these for future 
reference. 
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The highest priority is to get FAMILIAR into a state in which it can be reliably deployed 
in real-world development situations. To do this, we must re-implement the client-server 
architecture of FAM with a truly lightweight user interface. As discussed in Section 5, 
this probably means foregoing the use of an applet entirely and relying instead on 
dynamic HTML. This is a non-trivial development exercise, involving some interesting 
architectural questions and potentially some issues about non-intrusive rationale capture. 
Nevertheless, given the experience gained in this project, we believe that it will be a 
relatively straightforward process. 

Once the client-server architecture is stable, the next step towards equipping FAMILIAR 
for scale-up will be to integrate a DBMS. The one issue of substance in this task will be 
to streamline the FAM data model so that a user can easily "pan" in all directions over the 
corporate memory. 

Some explanation of this challenge is in order. In FAM 2, we consider all alternatives to 
be arranged in a single global hierarchy that is available for search and browsing. A 
keyword-driven search function directs the user to the sub-trees most likely to contain the 
information he needs. However, we want to allow the user to move up, down, and across 
these sub-trees to view related information. 

The "panning" process is not well supported in FAM 2 because of the baggage that has to 
be carried whenever new alternatives are placed in the user's view. This baggage includes 
components of the alternatives, which the user may also want to view. Therein lies the 
problem, because the components themselves may belong to very different locations in 
the global hierarchy. Therefore, moving up or down the alternatives tree involves more 
than just stepping across a single tree link. Efficiently handling this task will be the main 
challenge in providing a scaleable database. 

A related task will be to integrate a robust search capability. Certain aspects of the search 
process are specific to FAMILIAR, such as the user of features to describe alternatives. 
Nevertheless, it would be foolish for us to try to replicate the power of existing search 
engines. We must find a way to use them in the context of FAMILIAR. (FAM 2 contains 
a very simple search function, which is intended as a placeholder to illustrate the 
process.) 

A final task related to DBMS integration will be to provide fine-grained locking for 
multiple concurrent users. 

The tasks just described support scale-up to real-world development environments. 
Another prerequisite to getting FAMILIAR used is to refine the non-intrusive knowledge 
capture capabilities. The e-mail capture function that we implemented in this project 
provides a good foundation. In order to make it truly attractive to developers, we must be 
able test and refine it on an ongoing basis in a real development context. Although this 
may be considered a form of productization, it will provide us with deeper understanding 
of the usability issues involved in rationale capture. 
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A final task in support of true usability will be to support the transition between project- 
specific system design and organization domain modeling. The ambiguity in the current 
tool, discussed in Section 5.7, must be removed by providing explicit support for project 
design traces. The tool should support the transfer of project information into a cross- 
project corporate memory, and, conversely, importing information from the corporate 
memory for use in a specific project. 

Our vision will be realized when it is standard operating procedure for developers to 
access the corporate memory and immerse themselves in multi-media presentations of 
relevant best practice. They will use FAMILIAR to analyze the suitability of these 
solutions to the current problem, and to adapt and compose them as appropriate. At each 
step of the process, they will use FAMILIAR to capture both formal and informal 
rationale, thereby weaving their experience into the ongoing design memory of the 
organization and contributing to its collective competencies. 
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